Al-Yaari, A., Wigneron, J. P., Kerr, Y., de Jeu, R., Rodriguez-Fernandez, N., van der Schalie, R., … Ducharne, A. (2016). Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations. Remote Sensing of Environment, 180, 453–464. https://doi.org/10.1016/j.rse.2015.11.022
An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., … Ke, Z. (2016). Validation of the ESA CCI soil moisture product in China. International Journal of Applied Earth Observation and Geoinformation, 48, 28–36. https://doi.org/10.1016/j.jag.2015.09.009
Bi, H., Ma, J., Zheng, W., & Zeng, J. (2016). Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau: EVALUATE GLDAS SOIL MOISTURE OVER TP. Journal of Geophysical Research: Atmospheres, 121, 6, 2658–2678. https://doi.org/10.1002/2015JD024131
Chen, X., Su, Y., Liao, J., Shang, J., Dong, T., Wang, C., … Liu, L. (2016). Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979-2010): China’s 32 Year Soil Moisture. Journal of Geophysical Research: Atmospheres, 121, 10, 5177–5192. https://doi.org/10.1002/2015JD024676
Cissé, S., Eymard, L., Ottlé, C., Ndione, J., Gaye, A., & Pinsard, F. (2016). Rainfall Intra-Seasonal Variability and Vegetation Growth in the Ferlo Basin (Senegal). Remote Sensing, 8, 1, 66. https://doi.org/10.3390/rs8010066
Du, J., Kimball, J. S., & Jones, L. A. (2016). Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 54, 1, 597–608. https://doi.org/10.1109/TGRS.2015.2462758
Enenkel, M., Reimer, C., Dorigo, W., Wagner, W., Pfeil, I., Parinussa, R., & De Jeu, R. (2016). Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20, 10, 4191–4208. https://doi.org/10.5194/hess-20-4191-2016
Faridani, F., Farid, A., Ansari, H., & Manfreda, S. (2016). Estimation of the Root-Zone Soil Moisture Using Passive Microwave Remote Sensing and SMAR Model. Journal of Irrigation and Drainage Engineering, 4016070. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001115
Fascetti, F., Pierdicca, N., Crapolicchio, R., Pulvirenti, L., & Muoz-Sabater, J. (2016). An assessment of SMOS version 6.20 products through Triple and Quadruple Collocation techniques considering ASCAT, ERA/Interim LAND, ISMNand SMAP soil moisture data. IEEE, 91–94. https://doi.org/10.1109/MICRORAD.2016.7530511
Fascetti, F., Pierdicca, N., Pulvirenti, L., Crapolicchio, R., & Muñoz-Sabater, J. (2016). A comparison of ASCAT and SMOS soil moisture retrievals over Europe and Northern Africa from 2010 to 2013. International Journal of Applied Earth Observation and Geoinformation, 45, 135–142. https://doi.org/10.1016/j.jag.2015.09.008
Fernandez-Moran, R., Wigneron, J.-P., De Lannoy, G., Lopez-Baeza, E., Mialon, A., Mahmoodi, A., … Kerr, Y. (2016). Calibrating the effective scattering albedo in the SMOS algorithm: Some first results. IEEE, 826–829. https://doi.org/10.1109/IGARSS.2016.7729209
Gonzalez-Zamora, A., Sanchez, N., & Martinez-Fernandez, J. (2016). Validation of Aquarius Soil Moisture Products Over the Northwest of Spain: A Comparison With SMOS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 6, 2763–2769. https://doi.org/10.1109/JSTARS.2016.2517401
González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., & Wagner, W. (2016). Root-zone plant available water estimation using the SMOS-derived soil water index. Advances in Water Resources, 96, 339–353. https://doi.org/10.1016/j.advwatres.2016.08.001
Griesfeller, A., Lahoz, W. A., Jeu, R. A. M. d., Dorigo, W., Haugen, L. E., Svendby, T. M., & Wagner, W. (2016). Evaluation of satellite soil moisture products over Norway using ground-based observations. International Journal of Applied Earth Observation and Geoinformation, 45, 155–164. https://doi.org/10.1016/j.jag.2015.04.016
Gruber, A., Su, C.-H., Crow, W. T., Zwieback, S., Dorigo, W. A., & Wagner, W. (2016). Estimating error cross-correlations in soil moisture data sets using extended collocation analysis: EXTENDED COLLOCATION ANALYSIS. Journal of Geophysical Research: Atmospheres, 121, 3, 1208–1219. https://doi.org/10.1002/2015JD024027
Han, M., Lu, H., & Yang, K. (2016). Development of passive microwave retrieval algorithm for estimation of surface soil temperature from AMSR-E data. IEEE, 1671–1674. https://doi.org/10.1109/IGARSS.2016.7729427
Kędzior, M., & Zawadzki, J. (2016). Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland. Geoderma, 283, 21–31. https://doi.org/10.1016/j.geoderma.2016.07.023
Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., … Wigneron, J.-P. (2016). Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40–63. https://doi.org/10.1016/j.rse.2016.02.042
Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., … Wigneron, J.-P. (2016). Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40–63. http://doi.org/10.1016/j.rse.2016.02.042
Kim, S., Parinussa, R., Liu, Y., Johnson, F., & Sharma, A. (2016). Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model Combination Approach. Remote Sensing, 8, 6, 518. https://doi.org/10.3390/rs8060518
Koch, F., Schlenz, F., Prasch, M., Appel, F., Ruf, T., & Mauser, W. (2016). Soil Moisture Retrieval Based on GPS Signal Strength Attenuation. Water, 8, 7, 276. https://doi.org/10.3390/w8070276
Leng, P., Song, X., Duan, S.-B., & Li, Z.-L. (2016). Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network. International Journal of Remote Sensing, 37, 24, 5902–5917. https://doi.org/10.1080/01431161.2016.1253896
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Férnandez-Prieto, D., … Verhoest, N. E. C. (2016). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussions, 1–36. https://doi.org/10.5194/gmd-2016-162
Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., & Verhoest, N. E. C. (2016). Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. International Journal of Applied Earth Observation and Geoinformation, 48, 146–162. https://doi.org/10.1016/j.jag.2015.09.012
McNally, A., Shukla, S., Arsenault, K. R., Wang, S., Peters-Lidard, C. D., & Verdin, J. P. (2016). Evaluating ESA CCI soil moisture in East Africa. International Journal of Applied Earth Observation and Geoinformation, 48, 96–109. https://doi.org/10.1016/j.jag.2016.01.001
Nair, A., & Indu, J. (2016). Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture. Remote Sensing, 8, 12, 976. https://doi.org/10.3390/rs8120976
Orth, R., Dutra, E., & Pappenberger, F. (2016). Improving Weather Predictability by Including Land Surface Model Parameter Uncertainty. Monthly Weather Review, 144, 4, 1551–1569. https://doi.org/10.1175/MWR-D-15-0283.1
Pablos, M., Martínez-Fernández, J., Piles, M., Sánchez, N., Vall-llossera, M., & Camps, A. (2016). Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations. Remote Sensing, 8, 7, 587. https://doi.org/10.3390/rs8070587
Pal, M., Maity, R., & Dey, S. (2016). Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing. Water Resources Management, 30, 6, 1973–1986. https://doi.org/10.1007/s11269-016-1263-4
Pal, M., Maity, R., & Dey, S. (2016). Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing. Water Resources Management, 30, 6, 1973–1986. http://doi.org/10.1007/s11269-016-1263-4
Parinussa, R., de Jeu, R., van der Schalie, R., Crow, W., Lei, F., & Holmes, T. (2016). A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input. Climate, 4, 4, 50. https://doi.org/10.3390/cli4040050
Piles, M., Petropoulos, G. P., Sánchez, N., González-Zamora, Á., & Ireland, G. (2016). Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sensing of Environment, 180, 403–417. https://doi.org/10.1016/j.rse.2016.02.048
Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J., … Pulliainen, J. (2016). SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment, 180, 346–360. https://doi.org/10.1016/j.rse.2016.01.012
Santi, E., Paloscia, S., Pettinato, S., Brocca, L., & Ciabatta, L. (2016). Robust Assessment of an Operational Algorithm for the Retrieval of Soil Moisture From AMSR-E Data in Central Italy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 6, 2478–2492. https://doi.org/10.1109/JSTARS.2016.2575361
Santi, E., Paloscia, S., Pettinato, S., & Fontanelli, G. (2016). Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. International Journal of Applied Earth Observation and Geoinformation, 48, 61–73. https://doi.org/10.1016/j.jag.2015.08.002
Schalie, R. va. der, Kerr, Y. H., Wigneron, J. P., Rodríguez-Fernández, N. J., Al-Yaari, A., & Jeu, R. A. M. d. (2016). Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model. International Journal of Applied Earth Observation and Geoinformation, 45, 125–134. https://doi.org/10.1016/j.jag.2015.08.005
Scholze, M., Kaminski, T., Knorr, W., Blessing, S., Vossbeck, M., Grant, J. P., & Scipal, K. (2016). Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle. Remote Sensing of Environment, 180, 334–345. https://doi.org/10.1016/j.rse.2016.02.058
Shin, Y., Lim, K., Park, K., & Jung, Y. (2016). Development of Dynamic Ground Water Data Assimilation for Quantifying Soil Hydraulic Properties from Remotely Sensed Soil Moisture. Water, 8, 8, 311. https://doi.org/10.3390/w8070311
Su, C.-H., Ryu, D., Dorigo, W., Zwieback, S., Gruber, A., Albergel, C., … Wagner, W. (2016). Homogeneity of a global multisatellite soil moisture climate data record: HOMOGENEITY OF SOIL MOISTURE CDR. Geophysical Research Letters.. https://doi.org/10.1002/2016GL070458
Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., … Huang, J. (2016). Validation of the global land data assimilation system based on measurements of soil temperature profiles. Agricultural and Forest Meteorology, 218–219, 288–297. https://doi.org/10.1016/j.agrformet.2016.01.003
Wu, Q., Liu, H., Wang, L., & Deng, C. (2016). Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network. International Journal of Applied Earth Observation and Geoinformation, 45, 187–199. https://doi.org/10.1016/j.jag.2015.10.011
Zawadzki, J., & Kędzior, M. (2016). Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data. International Journal of Applied Earth Observation and Geoinformation, 45, 110–124. https://doi.org/10.1016/j.jag.2015.03.005
Zeng, J., Chen, K.-S., Bi, H., & Chen, Q. (2016). A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements. IEEE Transactions on Geoscience and Remote Sensing, 54, 8, 4929–4940. https://doi.org/10.1109/TGRS.2016.2553085
Zhang, D., Madsen, H., Ridler, M. E., Kidmose, J., Jensen, K. H., & Refsgaard, J. C. (2016). Multivariate hydrological data assimilation of soil moisture and groundwater head. Hydrology and Earth System Sciences, 20, 10, 4341–4357. https://doi.org/10.5194/hess-20-4341-2016
Zhao, L., Yang, Z.-L., & Hoar, T. J. (2016). Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4–RTM–DART System. Journal of Hydrometeorology, 17, 9, 2431–2454. https://doi.org/10.1175/JHM-D-15-0218.1
Zwieback, S., Su, C.-H., Gruber, A., Dorigo, W. A., & Wagner, W. (2016). The Impact of Quadratic Nonlinear Relations between Soil Moisture Products on Uncertainty Estimates from Triple Collocation Analysis and Two Quadratic Extensions. Journal of Hydrometeorology, 17, 6, 1725–1743. https://doi.org/10.1175/JHM-D-15-0213.1